This report demonstrated that Mini-Trach II, although primarily designed for repeated endotracheal suctioning, can be used as a satisfactory and safe interface for IPV.
For both children and adults, IPV is used in the treatment of various diseases, including in patients with neuromuscular weakness who have difficulty eliminating sputum on their own [1, 10, 11]. The reduced capacity of sputum expectoration, as in our patients, is considered a good indication for IPV.
The interface for delivering IPV varies, and it is necessary to select the optimal device according to the patient’s condition. IPV is commonly performed through a face mask or a mouthpiece; however, a face mask is generally difficult to tolerate for patients, and in such cases, as the fitting of the mask to the face is insufficient, IPV cannot sufficiently increase the ventilation to an effective pressure. In the present case, because of air leakage from both the face mask and mouthpiece due to a defect of his teeth, we could not perform IPV effectively.
To the best of our knowledge, Mini-Trach II has not been employed previously to perform IPV. A randomized controlled trial of the addition of IPV therapy to the usual chest physiotherapy regimen in tracheostomized patients showed that IPV therapy improved gas exchange and expiratory muscle performance and reduced the incidence of pneumonia [2]. In addition, there have been some reports that IPV delivered through a tracheal tube with an inner diameter of approximately 4.0 mm improved atelectasis in pediatric patients [6, 12]. When IPV is connected to the Mini-Trach II with an inner diameter of 4.0 mm, the same effect can be expected as that when it is connected to a small-diameter tracheal tube.
Respiratory management using Mini-Trach II has the following advantages: insertion and removal operations can be performed easily and quickly, this approach is less invasive than tracheostomy, and it is easy to wean the patient from mechanical ventilatory support [13, 14]. Furthermore, as a result of early weaning from mechanical ventilatory support, rehabilitation can be actively promoted, and thus, the length of hospital stay can be shortened.