After his arrival at the operation room, routine monitors were applied and a 20-G venous cannula was inserted in his left arm. Epidural catheter was placed via the T6/7 intervertebral space in the left decubitus position. Next, after arterial catheter insertion under local anesthesia, 3 mL of 4% lidocaine was sprayed around and into his larynx and epiglottis, under oxygen administration (3 mL/min with a nasal cannula). The combination of 5 mg droperidol and 100 μg fentanyl was intravenously administered to induce light sedation. A 37-Fr left-sided silicon DLT with a reinforced bronchial tip (SILBRONCHO™, Fuji Systems, Tokyo, Japan) was inserted via his trachea into the left main bronchus using a bronchoscope with 3.8 mm diameter (Ambu aView™ and aScope™ 3 Broncho Slim, Ambu, Copenhagen, Denmark), with the patient breathing spontaneously. Although remarkable stenosis of the left main bronchus (LMB) was seen under fiberoptic bronchoscopy (FOB), the bronchoscope was passed successfully, serving as a guide for placement of the DLT into the LMB. After bronchial insertion of the DLT and confirmation of the adequacy of manual positive pressure ventilation, 100 mg of propofol and 50 mg of rocuronium were administered for anesthesia maintenance. Despite collapse of the anterior and left apical parts of the bronchus by the weight of the tumor, accurate placement of the left-sided DLT could be performed owing to its flexibility. During left-sided one lung ventilation (OLV), positive pressure ventilation could be achieved with a permissive tidal volume of 400 mL after muscle relaxant administration in the supine position. Then, a central venous catheter was inserted via the right femoral vein.
After the patient was turned to the left lateral position, we once again confirmed the accuracy of DLT placement using bronchoscopy. At this point, his systolic blood pressure decreased to 60 mmHg, probably due to shift in the SVC that resulted in reduced venous return. Intermittently, 0.1-mg boluses of phenylephrine were administered as required, up to a total of 0.5 mg. However, since this did not result in an adequate increase in blood pressure, a continuous infusion of phenylephrine at the rate of 1 mg/h and albumin administration for volume loading were commenced. After achieving circulatory stability, left-sided OLV was attempted for 30 min. Since SpO2 could be maintained above 93% (FiO2 = 1), we decided to start the scheduled surgical procedure.
However, on opening the right thoracic cavity, his SpO2 gradually decreased to 88%, although the FiO2 remained at 1.0. Hence, we considered alternative airway management strategies or changing the surgical procedure before SVC clamping, because we have previously experienced severe hypotension and hypoxemia during SVC dissection that was difficult to manage. It was clarified by direct observation via the surgical field that selective block of the right upper lobe was the only available option during the main procedure of SVC replacement. Hence, we decided to perform selective block of the right upper lobe with a BB (Uni-blocker™ Fuji Systems Corp, Tokyo, Japan) in combination with the left-sided DLT (Fig. 3). The BB was inserted first through the tracheal lumen, followed by a smaller (3.1 mm) diameter FOB (LF-DP ™, OLYMPUS, Tokyo, Japan). BB was easily inserted with a simple rotation technique into the right upper bronchus, appropriate placement of BB in the upper bronchus being facilitated by the slight stenosis of the intermedius just below the right upper bronchus (Fig. 1a, b). Thereafter, SpO2 could be maintained above 93% during the remaining procedure and SVC replacement was successfully performed (Fig. 4).
The tumor along with the SVC and part of the sternum and the right fourth rib were resected. Additionally, after turning the patient to the supine position, partial resection of the right lung and left upper lobectomy were performed due to tumor invasion. After tumor resection, there was no decrease in either blood pressure or SpO2. Postoperatively, the DLT was changed to a supraglottic airway device (SGA) to facilitate subsequent bronchoscopic observation and to avoid excessive airway pressure due to bucking or coughing during emergence from general anesthesia.
Subsequently, the patient’s spontaneous respiration recovered after reversal of the muscle relaxant with 200 mg sugammadex, and the SGA was removed easily and smoothly. Durations of surgery and anesthesia were 443 and 525 min, respectively. Postoperative recovery was favorable. He was discharged without any complications on the tenth day after surgery.