The current study was approved by the institutional review board, and the approved number of subjects in our review board was 100. The informed consent was obtained from all eligible patients, and this study was registered in the UMIN Clinical Trial Registry (UMIN 000027418). This study was conducted from November 2014 to September 2015 at Sakurabashi-Watanabe hospital in Osaka, Japan. We prospectively examined the time required for the PAC placement for 74 adult patients undergoing elective cardiovascular surgery. The patients who had a history of tricuspid ring annuloplasty were excluded. All patients’ electrocardiogram, invasive arterial pressure, oxygen saturation, and end-tidal carbon dioxide were monitored. After the induction of anesthesia with midazolam, fentanyl or remifentanil, and vecuronium, mechanical ventilation was started following tracheal intubation. Anesthesia was maintained with propofol or sevoflurane combined with remifentanil and fentanyl. The PAC (continuous cardiac output/SvO2 Catheter 744HF75, Edwards Lifesciences, Irvine, CA, USA) was inserted through the right internal jugular vein by the same experienced physician (YM), who is a certified anesthesiologist of the Japan Society of Anesthesiologists. First, the introducer sheath was placed via the right internal jugular vein in the Trendelenburg position, and then, the PAC started floating through the sheath by monitoring the pressure waveform in the flat position. The PAC was inserted approximately 20 cm, and central venous pressure waveform was confirmed; subsequently, the balloon was inflated with 1.5 ml of air. With inflated balloon, the tip of the catheter floated into the pulmonary artery. The waveform of the pulmonary artery was first observed, followed by inserting the catheter approximately 2–3 cm forward and deflating the balloon. In this position, being confirmed that the tip of the catheter was not wedged into the pulmonary artery, the catheter was locked with the sheath.
The time required for placement of a PAC was measured. The catheter placement time was defined as the duration of time required for the catheter to float from the CVP position through the right heart chambers to the pulmonary artery, that is, the beginning time point was just after the inflation of the balloon to start floating the catheter and the ending time point is the time which we first observed the waveform of the pulmonary artery. If the placement was done within 5 min, we regarded this case as successful. On the other hand, if the placement failed to precede the catheter into the pulmonary artery in 5 min, some guidance such as transesophageal echocardiography or X-ray fluoroscopic system to visualize intracardiac catheter orientation was used.
In this study, we examined the effect of the following factors, which covered the patient’s characteristics, cardiac size and aortic size, and cardiac function, on the catheter placement time: the patient’s age, height, weight, BSA, cardiothoracic ratio (CTR), the diameter of aortic root and proximal ascending aorta, the degree of tricuspid valve regurgitation (TR), and ejection fraction (EF). EF and the degree of TR and CTR were evaluated by transthoracic echocardiography and X-ray examination, respectively, prior to the surgery. The diameter of the aortic root and proximal ascending aorta was obtained by the transesophageal echocardiography in the mid-esophageal long axis view after the induction of anesthesia. These values were measured at the following four points: aortic annulus, sinuses of Valsalva, sinotubular junction, and proximal ascending aorta on the level with right pulmonary artery by another staff physician who was blind to the catheter placement time. These diameters were measured at midsystole from inner edge to inner edge, because the catheter floated through the pulmonary valve during systole. According to the guideline [8], we recorded these values divided by the body surface area (BSA) to equalize among different physical sizes.
Based on first 30 cases, sample size was calculated to be 71 for detecting the diameter of aortic annulus at the significant level of 0.05 with a statistical power of 80%. Thus, we included 74 cases to clear the sample size. Data were expressed as means ± SD or as a median range and interquartile range as appropriate. To predict the difficulty of PAC placement from the factors, a multiple linear regression was conducted. Factors included in multiple linear regression analysis were selected among variables yielding P < 0.1 by simple linear regression analysis. All analyses were conducted with SPSS (IBM Corporation, USA) version 14.0. P < 0.05 was considered statically significant.