Written informed consent was obtained from the patient to publish this case report. A 40-year-old male patient with BiVAD support required cholecystectomy because of cholecystitis that could not be controlled with internal medication. He was diagnosed as having hypertrophic obstructive cardiomyopathy (HOCM) at the age of 25. His heart function became increasingly worse after HOCM progressed to the dilated phase. Severe heart failure occurred when he was 39 years old, and his circulation and oxygenation were insufficient even with medication, intra-aortic balloon pumping, and percutaneous cardiopulmonary support. Surgical aortic valve replacement, tricuspid valve plasty, and external left VAD (LVAD) installation were performed; however, he did not recover and right heart failure advanced. An external right VAD was required, and the LVAD was converted to an implanted one (Jarvik2000, Jarvik Heart, Inc., New York, NY) while the patient waited for heart transplantation. During these treatments for heart failure, he developed non-occlusive mesenteric ischemia and ileus, which required open abdominal surgery four times under general anesthesia. Soon after BiVAD surgery, he developed cholecystitis. Percutaneous transhepatic gallbladder drainage and antibiotics were continued for 1 month, but these treatments were ineffective. Cholecystectomy with laparotomy was planned because laparoscopic surgery was considered difficult, as the pipelines and drivelines of the VADs would prevent the use of an appropriate approach, and we expected strong adhesion caused by previous laparotomies.
He had been managed in an intensive care unit (ICU) for more than 200 days before the surgery. An arterial catheter and central venous catheter were placed preoperatively. He was not sedated and spontaneously ventilated, although tracheostomy had been performed, and supplemental oxygen was required because he had not recovered from a BiVAD procedure-related lung injury. No inotrope or vasoconstrictor was used preoperatively. Warfarin was discontinued 5 days before the surgery, and intravenous unfractionated heparin was administered until 6 h preoperatively. The international normalized ratio of prothrombin time (PT-INR) was 1.2 just before the patient entered the operating theater. General anesthesia was induced and maintained with a low dose of sevoflurane inhalation (0.8 to 1.0% end-tidal concentration) combined with a sub-anesthetic, intravenous dose of ketamine (30 mg bolus administration followed by a 0.5 mg/kg/h continuous infusion). Muscular relaxation was obtained using rocronium, and the patient was mechanically ventilated throughout the operation. Pressure control ventilation was chosen with the peak inspiratory pressure 20 cmH2O, respiratory rate from 10 to 12 times per minute and positive end-expiratory pressure 4 cmH2O. In addition to the basic monitors, we placed an INVOS™ (Medtronic, Minneapolis, MN) on the patient’s forehead to detect cerebral tissue oxygenation and on the foot to determine peripheral tissue oxygenation. We performed transesophageal echocardiography (TEE) using a pediatric probe to avoid esophageal injury, as a 14-French nasogastric tube was placed preoperatively, and the surgeons requested us to maintain it intraoperatively. We converted the arterial pressure measurement kit to the FloTrach™ (Edwards Lifesciences, Irvine, CA) to test its feasibility, although it could not estimate the stroke volume because of the low amplitude of waveform. The Jarvik2000 did not show the flow rate, so we estimated that the flow was stabilized because TEE did not show any significant change in the size and shape of both ventricles and septa, and the external right VAD flow rate was maintained at 3.8–3.9 L/min throughout the procedure.
Intraoperative analgesia was obtained with ketamine, and a 0.1 μg/kg/min infusion of remifentanil. 300 μg of fentanyl was administered to achieve the predicted target blood concentration 1 μg/ml at the time of postoperative ICU admission.
The surgeons had difficulty separating the adhesion and achieving hemostasis. When the blood loss exceeded 300 mL, we observed a moderate decrease in the mean blood pressure (from 60 to 50 mmHg) and central venous pressure (from 7 to 5 cmH2O), and a temporary decrease in the pulse oximetry value (Fig. 1). However, there was no decrease in the flow of the VADs, and TEE showed no change in the right and left ventricular sizes. We decided to transfuse two units of packed red blood cells when the blood loss reached 400 mL, because the patient had preoperative anemia. After transfusion, the blood pressure, central venous pressure, and pulse oximetry values restored. The surgery was successfully finished. The durations of surgery and anesthesia were 191 and 270 min, respectively. The total volume of infusion, bleeding, and urine were 810, 420, 45 mL, respectively. We did not use any inotropes or vasoconstrictors. We performed a transversus abdominis plane block using a posterior approach postoperatively. We awoke the patient in the operating theater, and his spontaneous ventilation recovered. Postoperative adverse events associated with anesthetic management were not observed. Postoperative analgesic effect of intraoperative low dose ketamine and transversus abdominis plane block was unclear because the patient was slightly sedated using dexmedetomidine during the first postoperative 24 h in the ICU, and we could not assess the pain scale. Cholecystitis was successfully treated, although he required furthermore ICU stay to manage hemodynamics and wound infection around the LVAD driveline exit cite. He underwent heart transplantation after a 120-day waiting duration from the cholecystectomy.